skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lewis, Alastair"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract. Flux measurements of nitrogen oxides (NOx) were made over London usingairborne eddy covariance from a low-flying aircraft. Seven low-altitude flights were conducted over Greater London, performing multiple overpasses across the city during eight days in July 2014. NOx fluxes across theGreater London region (GLR) exhibited high heterogeneity and strong diurnalvariability, with central areas responsible for the highest emission rates(20–30 mg m−2 h−1). Other high-emission areas included the M25 orbital motorway. The complexity of London's emission characteristics makes it challenging to pinpoint single emissions sources definitively usingairborne measurements. Multiple sources, including road transport andresidential, commercial and industrial combustion sources, are all likely to contribute to measured fluxes. Measured flux estimates were compared toscaled National Atmospheric Emissions Inventory (NAEI) estimates, accountingfor monthly, daily and hourly variability. Significant differences were found between the flux-driven emissions and the NAEI estimates acrossGreater London, with measured values up to 2 times higher in Central London than those predicted by the inventory. To overcome the limitations ofusing the national inventory to contextualise measured fluxes, we usedphysics-guided flux data fusion to train environmental response functions(ERFs) between measured flux and environmental drivers (meteorological and surface). The aim was to generate time-of-day emission surfaces usingcalculated ERF relationships for the entire GLR; 98 % spatial coverage was achieved across the GLR at 400 m2 spatial resolution. All flight legprojections showed substantial heterogeneity across the domain, with highemissions emanating from Central London and major road infrastructure. Thediurnal emission structure of the GLR was also investigated, through ERF,with the morning rush hour distinguished from lower emissions during the early afternoon. Overall, the integration of airborne fluxes with anERF-driven strategy enabled the first independent generation of surfaceNOx emissions, at high resolution using an eddy-covariance approach,for an entire city region. 
    more » « less
  2. Abstract. Isoprene-derived secondary organic aerosol (iSOA) is a significantcontributor to organic carbon (OC) in some forested regions, such astropical rainforests and the Southeastern US. However, its contribution toorganic aerosol in urban areas that have high levels of anthropogenicpollutants is poorly understood. In this study, we examined the formation ofanthropogenically influenced iSOA during summer in Beijing, China. Localisoprene emissions and high levels of anthropogenic pollutants, inparticular NOx and particulate SO42-, led to the formation ofiSOA under both high- and low-NO oxidation conditions, with significantheterogeneous transformations of isoprene-derived oxidation products toparticulate organosulfates (OSs) and nitrooxy-organosulfates (NOSs).Ultra-high-performance liquid chromatography coupled to high-resolution massspectrometry was combined with a rapid automated data processing techniqueto quantify 31 proposed iSOA tracers in offline PM2.5 filterextracts. The co-elution of the inorganic ions in the extracts caused matrixeffects that impacted two authentic standards differently. The averageconcentration of iSOA OSs and NOSs was 82.5 ng m−3, which was around 3 timeshigher than the observed concentrations of their oxygenated precursors(2-methyltetrols and 2-methylglyceric acid). OS formation was dependant onboth photochemistry and the sulfate available for reactive uptake, as shown by astrong correlation with the product of ozone (O3) and particulatesulfate (SO42-). A greater proportion of high-NO OS products wereobserved in Beijing compared with previous studies in less pollutedenvironments. The iSOA-derived OSs and NOSs represented 0.62 %of the oxidized organic aerosol measured by aerosol mass spectrometry on average, butthis increased to ∼3 % on certain days. These resultsindicate for the first time that iSOA formation in urban Beijing is stronglycontrolled by anthropogenic emissions and results in extensive conversion toOS products from heterogenous reactions. 
    more » « less
  3. null (Ed.)
    Abstract. Anthropogenic secondary organic aerosol (ASOA), formed from anthropogenicemissions of organic compounds, constitutes a substantial fraction of themass of submicron aerosol in populated areas around the world andcontributes to poor air quality and premature mortality. However, theprecursor sources of ASOA are poorly understood, and there are largeuncertainties in the health benefits that might accrue from reducinganthropogenic organic emissions. We show that the production of ASOA in 11urban areas on three continents is strongly correlated with the reactivityof specific anthropogenic volatile organic compounds. The differences inASOA production across different cities can be explained by differences inthe emissions of aromatics and intermediate- and semi-volatile organiccompounds, indicating the importance of controlling these ASOA precursors.With an improved model representation of ASOA driven by the observations,we attribute 340 000 PM2.5-related premature deaths per year to ASOA, which isover an order of magnitude higher than prior studies. A sensitivity casewith a more recently proposed model for attributing mortality to PM2.5(the Global Exposure Mortality Model) results in up to 900 000 deaths. Alimitation of this study is the extrapolation from cities with detailedstudies and regions where detailed emission inventories are available toother regions where uncertainties in emissions are larger. In addition tofurther development of institutional air quality management infrastructure,comprehensive air quality campaigns in the countries in South and CentralAmerica, Africa, South Asia, and the Middle East are needed for furtherprogress in this area. 
    more » « less